DSpace Welsh Repository Network Partner WRN Partners
  
 

Glamorgan DSpace >
University of Glamorgan >
Theses >
PhD theses from the University of Glamorgan >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10265/575

Title: Acoustic emission source location in composite aircraft structures using modal analysis
Authors: Aljets, Dirk
Keywords: Airplanes Noise
Acoustical engineering
Issue Date: 16-May-2012
Citation: Aljets,D. (2011) 'Acoustic emission source location in composite aircraft structures using modal analysis'. Unpublished Ph.D. thesis. University of Glamorgan.
Abstract: The aim of this research work was to develop an Acoustic Emission (AE) source location method suitable for Structural Health Monitoring (SHM) of composite aircraft structures. Therefore useful key signal features and sensor configurations were identified and the proposed method was validated using both artificially generated AE as well as actual AE resulting from damage. Acoustic Emission is a phenomenon where waves are generated in stressed materials. These waves travel through the material and can be detected with suitable sensors on the surface of the structure. These stress waves are attributed to propagating damage inside the material and can be monitored while the structure is in service. This makes AE very suitable for SHM, in particular for aircraft structures. In recent years composite materials such as carbon fibre reinforced epoxy (CFRP) are increasingly being used for primary and secondary structures in aircraft. The anisotropic layup of CFRP can lead to different failure mechanisms such as delamination, matrix cracking or fibre breakage which affects the remaining life time of the structure to different extents. Accurate damage location is important for SHM systems to avoid further inspections and allows for a maintenance scheme which considers the severity of the damage, due to damage type, extent and location. This thesis presents a novel source location method which uses a small triangular AE sensor array. The method determines the origin of an AE wave by a combination of time of arrival and modal analysis. The small footprint of the array allows for a fast and easy installation in hard-to-reach areas. The possibility to locate damage outside and at a relatively far distance from the array could potentially reduce the overall number of sensors needed to monitor a structure. Important wave characteristics and wave propagation in particular in CFRP were investigated using AE simulated by an artificial source and actual damage in composite specimens.
URI: http://hdl.handle.net/10265/575
Appears in Collections:PhD theses from the University of Glamorgan

Files in This Item:

File Description SizeFormat
PhD Thesis Dirk Aljets.pdf5.38 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback